

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	perjury 0.0.1 documentation

Welcome to Perjury’s documentation!

Perjury is a suite of tools for content generations. The overall goal of this
module is to both provide a thorough set of tools for generating fake content,
and to make writing new generators or extending existing generators a simple
process.

We want developers to spend time developing, rather than populating fake blod
entries with fake content.

Contents:

	Getting Started

	Base Module
	Generators

	Generators Module
	Generators

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Aaron Merriam.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	perjury 0.0.1 documentation

Getting Started

Getting up and running with Perjury generators is very simple.

>>> from perjury.generators import smallint
>>> smallint()
3
>>> smallint()
500
>>> [smallint() for x in range(10)]
[48, 2, 71, 64, 3, 46, 99, 33, 80, 3]

Perjury is built around the concept of callables. All generators provided by
Perjury implement the same simple interface.

Note

Calling the generator returns a value

Admittedly perjury.generators.smallint() is not a very impressive
generator, so lets jump right into some real use cases. For this example we
will be generating a generic user. In order to try and keep this generic, lets
use the following schema for what our users will look like.

Note

Users of Django will likely recognize the following as a slightly mutated
version of Django’s build in User model. While trying to keep this example
simple, we also want to showcase an example that solves a real world problem.

	User
	username (unique)

	hashed password

	is_active

	is_superuser

The fist thing we’ll need is a username generator. While there are many ways
to do this, we’re going to to use a random choice from a predefined set of
usernames.

import random

usernames = ['animal', 'beaker', 'fozzie', ... , 'scooter']
def username():
 return random.choice(usernames)

This is a pretty solid solution for most situations. However, in practice, we
could quickly run into some issues with uniqueness across the set of generated
usernames. Instead of diving down the rabbit hole of ways to implement
uniqueness across our username function, lets use Perjury’s built in function
decorator perjury.util.unique(). The simplest implementation works for
most cases.

>>> from perjury.util import unique
>>> [username() for a in range(3)]
['animal', 'fozzie', 'animal'] # can (and will) return repeat values
>>> unique_username = unique(username)
>>> [unique_username() for a in range(10)]
['animal', 'fozzie', ...] # will enforce uniqueness across return values.

Note

The unique decorator will just work in most cases. It is however important
to read the full documentation on how it works, and how you can configure how
uniqueness constraints are enforced.

Of course, Perjury comes with a username generator that should work for most
needs. The point of this however is to illustrate that Perjury both provides a
very broad set of tools to generate content, and can be used to very easily
build your own generator for any kind of data.

We’re going to skip over password for now and move onto our other fields. For
our is_active boolean field, we will want to generate some random True
and False values, but unevenly distributed. Lets generate 1 inactive user
for every 3 active users.

import random

def active():
 return bool(random.randint(0, 3))

Perjury comes with an easy to use weighted_choice() generator. For now,
we’ll just use our active function.

Next, lets create our function for generating superuser status. Lets be sure
that we only generate one superuser. While there are plenty of functional ways
to do this, we’d like to take this time to demonstrate how you can easily write
stateful generator callables.

from perjury.generators import BaseGenerator

class SuperuserStatus(BaseGenerator):
 superuser_generated = False

 def generator(self):
 if not self.superuser_generated:
 self.superuser_generated = True
 return True
 else:
 return False

And to use it.

>>> superuser_callable = SuperuserStatus()
>>> superuser_callable()
True
>>> superuser_callable()
False
>>> [superuser_callable() for i in range(5)]
[False, False, False, False, False]

So lets pull this all together into a cohesive user generator. Attentive
readers will realize that we’ve left out a generator for the password field.
For now however, lets look at what our user generator would look like combining
all of our code so far.

import random
from perjury.util import unique

usernames = ['animal', 'beaker', 'fozzie', ... , 'scooter']

@unique
def username():
 return random.choice(usernames)

def active():
 return bool(random.randint(0, 3))

class SuperuserStatus(BaseGenerator):
 superuser_generated = False

 def generator(self):
 if not self.superuser_generated:
 self.superuser_generated = True
 return True
 else:
 return False

superuser_callable = SuperuserStatus()

def user_generator():
 user = User(username=username(), is_active=active(), is_superuser=superuser_callable())
 user.set_password('password')
 return user

Now you may see why we skipped over password. In our slightly fictional
example model, instead of computing a password hash ourselves, it is much
easier to use the built in API call to set_password to set the hashed
password.

None of this is very novel at face value. Most programmers with a bit of
experience could hammer out the code above in a short period of time. However,
this code tends to be tedious at best and often involves a lot of ‘re-inventing
the wheel’ type of code. This is where Perjury comes in to save the day. Lets
take a look at an implementation both functionally and class-based.

Functionally:

import itertools

from perjury.generators import username, weighted_choice
from perjury.util import unique

unique_username = unique(username)

def user_generator():
 user = User(
 username=unique_username(),
 is_active=weighted_choice({True: 1, False: 3}),
 is_superuser=itertools.chain([True], itertools.repeat(False))
)
 user.set_password('password')

Class-Based:

import itertools

from perjury.generators import BaseGenerator, username, weighted_choice

class UserGenerator(BaseGenerator):
 unique = True
 key_fn = lambda u: u.username

 def generator(self):
 user = User(
 username=username(),
 is_active=weighted_choice({True: 1, False: 3}),
 is_superuser=itertools.chain([True], itertools.repeat(False))
)

Perjury does its best to both provide a very broad set of tools, and ensure
that its tools can be re-used and modified to suit your content generation
needs. Most of the generators found in Perjury are build off of a small set of
functional tools included with Perjury along with some thin wrappers around
many of the tools python provides.

 Copyright 2012, Aaron Merriam.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	perjury 0.0.1 documentation

Base Module

perjury.base declares base generator classes used to constuct more useful generators.

Generators

 Copyright 2012, Aaron Merriam.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	perjury 0.0.1 documentation

Generators Module

perjury.generators provides some helpful common generator classes.

Generators

Name Generators

Text Generators

Content Generators

 Copyright 2012, Aaron Merriam.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	perjury 0.0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 perjury	

 	
 	
 perjury.generators	

 Copyright 2012, Aaron Merriam.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	perjury 0.0.1 documentation

Index

 P

P

 	

 	perjury.generators (module), [1], [2]

 Copyright 2012, Aaron Merriam.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

intro.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		perjury 0.0.1 documentation »

Introduction

:module:`perjury` is a suite of tools for content generation. The goal of this
package is to provide tools which can help aid and automate content generation
for a variety of applications.

 © Copyright 2012, Aaron Merriam.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		
 modules |

 		perjury 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Aaron Merriam.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

